- 產(chǎn)品描述
鉤端螺旋體IgM免疫熒光試劑盒
Leptospira IgM IFA Kit
廣州健侖生物科技有限公司
主要用途:用于檢測人血清中的鉤端螺旋體IgM抗體
產(chǎn)品規(guī)格:12 孔/張,10 張/盒
主要產(chǎn)品包括:包柔氏螺旋體菌、布魯氏菌、貝納特氏立克次體、土倫桿菌、鉤端螺旋體、新型立克次體、恙蟲病、立克次體、果氏巴貝西蟲、馬焦蟲、牛焦蟲、利什曼蟲、新包蟲、弓形蟲、貓流感病毒、貓冠狀病毒、貓皰疹病毒、犬瘟病毒、犬細(xì)小病毒等病原微生物的 IFA、MIF、ELISA試劑。
鉤端螺旋體IgM免疫熒光試劑盒
我司還提供其它進(jìn)口或國產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細(xì)菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
JL-FL38 | parkeri立克次體IgG ELISA | R. parkeri IgG ELISA Kit |
JL-FL39 | montanensis立克次體IgG ELISA | R. montanensis IgG ELISA Kit |
JL-FL40 | EB病毒衣殼IgG免疫熒光玻片試劑盒 | EBV Viral Capsid IgG IFA Kit |
JL-FL41 | EB病毒衣殼IgM免疫熒光玻片試劑盒 | EBV Viral Capsid IgM IFA Kit |
JL-FL42 | EB病毒早期抗原IgG免疫熒光玻片試劑盒 | EBV Early Antigens IgG IFA Kit |
JL-FL43 | 鉤端螺旋體IgG免疫熒光試劑盒 | Leptospira IgG IFA Kit |
JL-FL44 | Leptospira IgM IFA Kit | |
JL-FL45 | 果氏巴貝西蟲免疫熒光玻片 | Babesia microti IFA Substrate slide |
JL-FL46 | 果氏巴貝西蟲IgG免疫熒光試劑盒 | Babesia microti IgG IFA Kit |
JL-FL47 | 果氏巴貝西蟲IgM免疫熒光試劑盒 | Babesia microti IgM IFA Kit |
JL-FL48 | 埃立克體IgG微量免疫熒光試劑盒 | Ehrlichia canis Canine IFA IgG Kit |
JL-FL49 | 包柔氏螺旋體菌IgG免疫熒光試劑盒 | Borrelia IgG IFA Kit |
JL-FL50 | 布魯氏菌IgG免疫熒光試劑盒 | Brucella IgG IFA Kit |
JL-FL51 | 里氏新立克次體IgG免疫熒光試劑盒 | Neorickettsia risticii IgG IFA Kit |
JL-FL52 | 弓形蟲IgG免疫熒光試劑盒(檢測貓) | Toxoplasma IFA Feline IgG Kit |
JL-FL53 | 弓形蟲IgG免疫熒光試劑盒(檢測狗) | Toxoplasma IFA Canine IgG Kit |
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號二期2幢101-3室
【企業(yè)文化】
另一個(gè)還不清楚的問題是,單層的視網(wǎng)膜上皮到底是怎么演變成視杯形狀的??偟膩碚f,機(jī)械力和組織的剛性控制著上皮組織的形變。通過在體外測定視杯形成過程中上皮不同部分的受力方向和組織剛性,我們發(fā)現(xiàn),形成這一結(jié)構(gòu)需要三個(gè)步驟。在這一過程中,視網(wǎng)膜的剛性減弱,柔韌性增加;同時(shí),視網(wǎng)膜與上皮交界處的細(xì)胞變成楔形;zui后,視網(wǎng)膜因快速擴(kuò)展而內(nèi)陷。這三個(gè)步驟對視杯的形成至關(guān)重要。實(shí)際上,當(dāng)我們把這些與組織的機(jī)械性質(zhì)有關(guān)的條件輸入計(jì)算機(jī)模擬程序后,的確出現(xiàn)了我們熟悉的酒杯形狀。
在培養(yǎng)皿中,誘導(dǎo)胚胎干細(xì)胞形成視網(wǎng)膜的過程,扼要地再現(xiàn)了胚胎中眼睛發(fā)育的主要步驟。這項(xiàng)技術(shù)對基礎(chǔ)研究的價(jià)值不可估量,同時(shí)有助于開發(fā)一些療法,幫助視力減退的患者恢復(fù)視力。如下圖所示,在加入名為生長因子的分子之后,胚胎干細(xì)胞開始聚集;大約5天后,開始形成zui原始的視泡。及至第7天,視泡向外凸出;幾天后,該結(jié)構(gòu)內(nèi)陷,形成視杯;到第24天,視網(wǎng)膜的所有層次初具雛形。
應(yīng)用前景
聽說我們的研究后,人們自然想知道,用小鼠胚胎干細(xì)胞所做的工作究竟能否給眼疾患者帶來好處。在這個(gè)方向上,我們已取得了一些進(jìn)展。值得一提的是,我的實(shí)驗(yàn)室zui近剛剛在一篇文章中報(bào)道過,我們成功地使人類胚胎干細(xì)胞分化成視杯和多層神經(jīng)組織。我們預(yù)計(jì),同樣的培養(yǎng)方法也可應(yīng)用于人類的誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPS)——成熟細(xì)胞受到特定刺激后,經(jīng)過逆轉(zhuǎn)的發(fā)育過程,可成為誘導(dǎo)多能干細(xì)胞,其行為與胚胎干細(xì)胞相似。我們還發(fā)明了更好的低溫貯存方法,能在液氮中儲(chǔ)存由人類胚胎細(xì)胞分化成的視網(wǎng)膜組織。
這些工作都將推動(dòng)體外培養(yǎng)的視網(wǎng)膜組織應(yīng)用于醫(yī)學(xué)。例如,我們可以制造人工視網(wǎng)膜,幫助人們研究常見眼部疾病的病理機(jī)制,推動(dòng)新藥和基因療法的研究,逆轉(zhuǎn)視網(wǎng)膜病變。
*有數(shù)百萬人患有黃斑變性、視網(wǎng)膜色素變性(retinitis pigmentosa)和青光眼(glaucoma),這三種視網(wǎng)膜退行性疾病的患者也許都可以從我們的研究中獲益。三種疾病中,發(fā)生病變的視網(wǎng)膜細(xì)胞層各不相同。在黃斑變性中,由于支撐組織“崩潰”,視網(wǎng)膜上皮的完整性受到影響,光感受器細(xì)胞也發(fā)生退化,尤其是視網(wǎng)膜中心區(qū)域。在視網(wǎng)膜色素變性中,視桿細(xì)胞(rod,光感受器細(xì)胞的一種)數(shù)量一年年逐漸減少,zui初也是zui常見的癥狀是“夜盲”,而后來,患者會(huì)喪失大部分視野,只剩下一小塊中心視野。在青光眼病例中,受損的則是神經(jīng)節(jié)細(xì)胞,這類細(xì)胞會(huì)伸出視神經(jīng),把視網(wǎng)膜與大腦后部皮層上的視覺處理中心連接起來。
Another issue that remains unclear is how the monolayer of the retinal epithelium evolves into a cup-like shape. In general, mechanical and tissue rigidity control epithelial tissue deformation. By measuring the direction of stress and the stiffness of the tissue in different parts of the epithelium in vitro during the formation of the optic cup, we found that three steps are required to form this structure. During this process, the rigidities of the retina weaken and the flexibility increases. At the same time, the cells at the junction of the retina and the epithelium become wedges. Finally, the retina is invaded by rapid expansion. These three steps on the formation of the cup is crucial. In fact, when we put these conditions related to the mechanical properties of the organization into our computer simulation program, we were indeed familiar with the shape of the glass.
The process of inducing embryonic stem cells to form the retina in petri dishes briefly reproduces the major steps in eye development in the embryo. The technology is invaluable to basic research and helps to develop therapies that help patients with vision loss regain their eyesight. As shown in the figure below, embryonic stem cells began to aggregate after the addition of a molecule called growth factor; about five days later, the most primitive vesicles began to form. By day 7, the vesicles bulged outward; a few days later, the structure retracted to form an optic cup; by day 24, all layers of the retina were initially rudimentary.
Application prospects
After hearing about our research, it is natural to wonder whether the work done with mouse embryonic stem cells can benefit patients with eye diseases. In this direction, we have made some progress. It is worth mentioning that my laboratory recently reported in an article that we successfully differentiated human embryonic stem cells into optic cups and multiple layers of neural tissue. We expect that the same culture can also be applied to human induced pluripotent stem cells (iPS), which are induced pluripotent stem cells after their specific stimuli have undergone a specific process of development Embryonic stem cells are similar. We have also invented better cryogenic storage methods that store retinal tissue differentiated from human embryonic cells in liquid nitrogen.
These efforts will promote the use of cultured retinal tissue in medicine. For example, we can make artificial retina to help people study the pathological mechanism of common eye diseases, promote the research of new drugs and gene therapy, and reverse the retinopathy.
Millions of people worldwide have macular degeneration, retinitis pigmentosa and glaucoma, and all three patients with retinal degenerative diseases may benefit from our study. Of the three diseases, retinal layers of the lesion vary. In macular degeneration, the integrity of the retinal epithelium is affected by the collapsing of the supporting tissue, and the photoreceptor cells also degenerate, especially in the central retinal region. In retinitis pigmentosa, the number of rods (a type of photoreceptor cells) gradually decreases year by year, the first and most common symptom is "night blindness", and later, the patient will lose most of the field of vision, leaving only A small central field of vision. In glaucoma cases, ganglion cells are damaged, and these cells extend the optic nerve, connecting the retina to the visual processing center on the posterior cortex of the brain.